Copper Tungsten

Product process

Characteristics

The products are metallurgy of tungsten and copper or silver made through the above metallurgy. The standard composition is 75/25\% (tungsten/copper or -/silver) although the other compositions are available. The shape of product are available to be provided in rod, plate $\&$ the other cut pieces

1. Resistance welding electrode

It integrates such features of tungsten and copper as high temperature resistance, electrical arc ablation resistance, high proportion, good electrical and heat conductivity, being easy to cut and transpiration cooling.
It also owns such advantages of tungsten as high hardness, melting and adherence resistance. It is used for projection welding and butt-welding electrode with high temperature resistance.
2. Electric spark electrode

It is used for the electrode of mould made from tungsten copper alloy and mega-hard alloy.
The common electrode has high consumption and low rate.
The high electrical ablation rate, low consumption ratio, precise electrode size and high quality processing performance of copper tungsten can ensure that the precision of the work piece is greatly enhanced.

3. High-voltage discharge tube electrode

When the high-voltage vaccum discharge tube is working, the temperature of contact material will rise to thousands degreed centigrade within several tenths seconds.
High ablation resistance, high toughness, good electrical and conductivity of copper tungsten provide necessary condition to stable operation of the discharge tube.

4. Electric contact

a) Telecommunication
b) Control signal
c) Automotive \& Power relay
d) Semi-conductor
e) Weight balance
f) Electric connector - conductive device joining \& electric circuit breaker

Electrode contact can be produced from a variety of precious metal material including fine silver, silver tungsten, copper tungsten and copper graphute alloy.
Mainly, the application have been widely used in mechanical switchs and circuit breaker. Many kind of them required high quality and safety for electric,thermal shock for each process

Copper Tungsten

| |
| :--- | :--- | :--- | :--- | :--- | :--- |

Silver Tungsten

Specification											
Type	Class	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Conductivity (\%IACS)	HRB	HB (Mpa)						
AgW60	9	$14.6-14.9$	≥ 54	$80-83$	≥ 1515						
AgW70	10	$15.2-15.5$	≥ 50	$89-92$	≥ 1695						
AgW75	11	$15.8-16.1$	≥ 45	$92-95$	≥ 2005						
AgW80	12	$16.3-16.6$	≥ 40	$94-99$	≥ 2130						
AgW85	13	$16.9-17.2$	≥ 35	$102-105$	≥ 2325						

[^0]
Copper Tungsten

Rod (Round)

Dia. (mm)	Available		
	$\mathrm{L}=100 \mathrm{~mm}$	$\mathrm{~L}=150 \mathrm{~mm}$	$\mathrm{~L}=200 \mathrm{~mm}$
0.7	O		
0.8	O		
0.9	O		
1.0	O	O	O
2.0	O	O	O
3.0	O	O	O
4.0	O	O	O
5.0	O	O	O
6.0	O	O	O
7.0	O	O	O
8.0	O	O	O
9.0	O	O	O
10.0	O	O	O
11.0	O	O	O
12.0	O	O	O
13.0	O	O	O
14.0	O	O	O
15.0	O	O	O
16.0	O	O	O
17.0	O	O	O
18.0	O	O	O
19.0	O	O	O
20.0	O	O	O
21.0	O	O	O
22.0	O	O	O
23.0	O	O	O
24.0	O	O	O
25.0	O	O	O
26.0	O	O	O
27.0	O	O	O
28.0	O	O	O
29.0	O	O	O
7.0	O	O	O
\sim	\sim	\sim	
2	O	x	

Plate (Block, Disk ...)

Unit : mm							
Thickness \times Width \times Length	Available						
1×75×200	X	1x100x100	X	1x100x150	X	1x100x200	X
$2 \times 75 \times 200$	X	$2 \times 100 \times 100$	X	$2 \times 100 \times 150$	X	$2 \times 100 \times 200$	X
$3 \times 75 \times 200$	0	$3 \times 100 \times 100$	0	$3 \times 100 \times 150$	0	$3 \times 100 \times 200$	0
$4 \times 75 \times 200$	0	4×100x100	0	4×100×150	0	4×100x200	0
$5 \times 75 \times 200$	0	$5 \times 100 \times 100$	0	$5 \times 100 \times 150$	0	$5 \times 100 \times 200$	0
$6 \times 75 \times 200$	0	$6 \times 100 \times 100$	0	$6 \times 100 \times 150$	0	$6 \times 100 \times 200$	0
$7 \times 75 \times 200$	0	$7 \times 100 \times 100$	\bigcirc	$7 \times 100 \times 150$	O	$7 \times 100 \times 200$	\bigcirc
$8 \times 75 \times 200$	0	$8 \times 100 \times 100$	0	$8 \times 100 \times 150$	0	$8 \times 100 \times 200$	0
$9 \times 75 \times 200$	0	$9 \times 100 \times 100$	0	$9 \times 100 \times 150$	0	$9 \times 100 \times 200$	0
$10 \times 75 \times 200$	0	10x100x100	0	$10 \times 100 \times 150$	0	$10 \times 100 \times 200$	0
$11 \times 75 \times 200$	0	$11 \times 100 \times 100$	0	$11 \times 100 \times 150$	0	11×100×200	0
$12 \times 75 \times 200$	0	$12 \times 100 \times 100$	0	$12 \times 100 \times 150$	0	$12 \times 100 \times 200$	0
$13 \times 75 \times 200$	0	$13 \times 100 \times 100$	0	$13 \times 100 \times 150$	0	$13 \times 100 \times 200$	0
$14 \times 75 \times 200$	0	$14 \times 100 \times 100$	0	$14 \times 100 \times 150$	0	$14 \times 100 \times 200$	0
$15 \times 75 \times 200$	0	$15 \times 100 \times 100$	0	$15 \times 100 \times 150$	0	$15 \times 100 \times 200$	0
$16 \times 75 \times 200$	0	$16 \times 100 \times 100$	0	$16 \times 100 \times 150$	0	$16 \times 100 \times 200$	0
$17 \times 75 \times 200$	0	$17 \times 100 \times 100$	0	17x100×150	0	$17 \times 100 \times 200$	0
$18 \times 75 \times 200$	0	$18 \times 100 \times 100$	0	$18 \times 100 \times 150$	0	$18 \times 100 \times 200$	0
$19 \times 75 \times 200$	0	$19 \times 100 \times 100$	0	19x100×150	0	19x100x200	0
$20 \times 75 \times 200$	0	$20 \times 100 \times 100$	0	$20 \times 100 \times 150$	0	$20 \times 100 \times 200$	0
$21 \times 75 \times 200$	0	$21 \times 100 \times 100$	0	$21 \times 100 \times 150$	0	$21 \times 100 \times 200$	0
$22 \times 75 \times 200$	0	$22 \times 100 \times 100$	0	$22 \times 100 \times 150$	0	$22 \times 100 \times 200$	0
$23 \times 75 \times 200$	0	$23 \times 100 \times 100$	0	$23 \times 100 \times 150$	0	$23 \times 100 \times 200$	0
$24 \times 75 \times 200$	0	$24 \times 100 \times 100$	0	$24 \times 100 \times 150$	0	24×100×200	0
$25 \times 75 \times 200$	0	$25 \times 100 \times 100$	0	$25 \times 100 \times 150$	0	$25 \times 100 \times 200$	0
$26 \times 75 \times 200$	0	$26 \times 100 \times 100$	0	$26 \times 100 \times 150$	0	$26 \times 100 \times 200$	0
$27 \times 75 \times 200$	0	$27 \times 100 \times 100$	0	$27 \times 100 \times 150$	0	27x100x200	0
$28 \times 75 \times 200$	0	$28 \times 100 \times 100$	0	$28 \times 100 \times 150$	0	$28 \times 100 \times 200$	0
$29 \times 75 \times 200$	0	$29 \times 100 \times 100$	0	$29 \times 100 \times 150$	0	$29 \times 100 \times 200$	0
$30 \times 75 \times 200$	0	$30 \times 100 \times 100$	0	$30 \times 100 \times 150$	0	$30 \times 100 \times 200$	0
\sim	\sim	\sim	\sim			\sim	\sim
50x75x200	0	$50 \times 100 \times 100$	0			$50 \times 100 \times 200$	0

※ The above quotations can be adjusted to depending on raw material status of LME market.

Silver Tungsten

Rod (Round)

Dia. (mm)	Available		
	$\mathrm{L}=100 \mathrm{~mm}$	$\mathrm{~L}=150 \mathrm{~mm}$	$\mathrm{~L}=200 \mathrm{~mm}$
0.7	O		
0.8	O		
0.9	O		
1.0	O	O	O
2.0	O	O	O
3.0	O	O	O
4.0	O	O	O
5.0	O	O	O
6.0	O	O	O
7.0	O	O	O
8.0	O	O	O
9.0	O	O	O
10.0	O	O	O
11.0	O	O	O
12.0	O	O	O
13.0	O	O	O
14.0	O	O	O
15.0	O	O	O
16.0	O	O	O
17.0	O	O	O
18.0	O	O	O
19.0	O	O	O
20.0	O	O	O
21.0	O	O	O
22.0	O	O	O
23.0	O	O	O
24.0	O	O	O
25.0	O	O	O
26.0	O	O	O
27.0	O	O	O
28.0	O	O	O
29.0	O	O	O
70.0	O	O	O
\sim	\sim	\sim	
2	O	x	

Plate (Block, Disk ...)

Unit : mm							
Thickness \times Width \times Length	Available						
1×75x200	X	1x100x100	X	1x100x150	X	1x100x200	X
$2 \times 75 \times 200$	X	$2 \times 100 \times 100$	X	$2 \times 100 \times 150$	X	$2 \times 100 \times 200$	X
$3 \times 75 \times 200$	0	$3 \times 100 \times 100$	0	$3 \times 100 \times 150$	0	$3 \times 100 \times 200$	0
$4 \times 75 \times 200$	0	$4 \times 100 \times 100$	0	4x100×150	O	4x100x200	O
$5 \times 75 \times 200$	0	$5 \times 100 \times 100$	0	$5 \times 100 \times 150$	0	$5 \times 100 \times 200$	0
$6 \times 75 \times 200$	0	$6 \times 100 \times 100$	0	$6 \times 100 \times 150$	0	$6 \times 100 \times 200$	\bigcirc
$7 \times 75 \times 200$	0	$7 \times 100 \times 100$	0	$7 \times 100 \times 150$	\bigcirc	$7 \times 100 \times 200$	0
$8 \times 75 \times 200$	0	$8 \times 100 \times 100$	0	$8 \times 100 \times 150$	0	$8 \times 100 \times 200$	0
$9 \times 75 \times 200$	\bigcirc	$9 \times 100 \times 100$	0	$9 \times 100 \times 150$	0	$9 \times 100 \times 200$	0
$10 \times 75 \times 200$	0	$10 \times 100 \times 100$	0	$10 \times 100 \times 150$	0	$10 \times 100 \times 200$	0
$11 \times 75 \times 200$	0	$11 \times 100 \times 100$	0	$11 \times 100 \times 150$	0	$11 \times 100 \times 200$	0
$12 \times 75 \times 200$	0	$12 \times 100 \times 100$	0	$12 \times 100 \times 150$	0	$12 \times 100 \times 200$	O
$13 \times 75 \times 200$	0	$13 \times 100 \times 100$	0	$13 \times 100 \times 150$	0	$13 \times 100 \times 200$	0
$14 \times 75 \times 200$	0	$14 \times 100 \times 100$	0	$14 \times 100 \times 150$	O	$14 \times 100 \times 200$	0
$15 \times 75 \times 200$	0	$15 \times 100 \times 100$	0	$15 \times 100 \times 150$	0	$15 \times 100 \times 200$	0
$16 \times 75 \times 200$	0	$16 \times 100 \times 100$	0	$16 \times 100 \times 150$	O	$16 \times 100 \times 200$	O
$17 \times 75 \times 200$	0	$17 \times 100 \times 100$	0	$17 \times 100 \times 150$	0	$17 \times 100 \times 200$	0
$18 \times 75 \times 200$	\bigcirc	$18 \times 100 \times 100$	0	$18 \times 100 \times 150$	\bigcirc	$18 \times 100 \times 200$	\bigcirc
$19 \times 75 \times 200$	0	$19 \times 100 \times 100$	0	$19 \times 100 \times 150$	0	$19 \times 100 \times 200$	O
$20 \times 75 \times 200$	0	20×100×100	0	$20 \times 100 \times 150$	0	$20 \times 100 \times 200$	0
$21 \times 75 \times 200$	0	$21 \times 100 \times 100$	0	$21 \times 100 \times 150$	0	$21 \times 100 \times 200$	0
$22 \times 75 \times 200$	0	$22 \times 100 \times 100$	0	$22 \times 100 \times 150$	0	$22 \times 100 \times 200$	0
$23 \times 75 \times 200$	0	$23 \times 100 \times 100$	0	$23 \times 100 \times 150$	0	$23 \times 100 \times 200$	0
$24 \times 75 \times 200$	\bigcirc	$24 \times 100 \times 100$	\bigcirc	$24 \times 100 \times 150$	0	$24 \times 100 \times 200$	0
$25 \times 75 \times 200$	\bigcirc	$25 \times 100 \times 100$	0	$25 \times 100 \times 150$	0	$25 \times 100 \times 200$	0
$26 \times 75 \times 200$	0	$26 \times 100 \times 100$	0	$26 \times 100 \times 150$	0	$26 \times 100 \times 200$	0
$27 \times 75 \times 200$	O	$27 \times 100 \times 100$	O	$27 \times 100 \times 150$	0	$27 \times 100 \times 200$	\bigcirc
$28 \times 75 \times 200$	\bigcirc	$28 \times 100 \times 100$	0	$28 \times 100 \times 150$	\bigcirc	$28 \times 100 \times 200$	\bigcirc
$29 \times 75 \times 200$	0	$29 \times 100 \times 100$	0	$29 \times 100 \times 150$	0	$29 \times 100 \times 200$	0
$30 \times 75 \times 200$	0	$30 \times 100 \times 100$	0	$30 \times 100 \times 150$	O	$30 \times 100 \times 200$	O
~	~	~	~			\sim	~
50x75x200	O	$50 \times 100 \times 100$	O	$50 \times 100 \times 150$		$50 \times 100 \times 200$	O

※ The above quotations can be adjusted to depending on raw material status of LME market.

Copper Tungsten / Standard Tube

Metric unit (mm)				Imperial unit (")			
O.D	I.D.	Tolerance of O.D.	Length	O.D	I.D.	Tolerance of O.D.	Length
1.00	0.25	0-+0.03	200	0.039	0.010	$0-+0.001$	8.0
1.10	0.25	0-+0.03	200	0.043	0.010	0-+0.001	8.0
1.20	0.25	0-+0.03	200	0.047	0.010	0-+0.001	8.0
1.30	0.25	0-+0.03	200	0.051	0.010	0-+0.001	8.0
1.40	0.25	0-+0.03	200	0.055	0.010	0-+0.001	8.0
1.50	0.40	0-+0.03	200	0.059	0.016	$0-+0.001$	8.0
1.60	0.40	0-+0.05	200	0.063	0.016	0- +0.002	8.0
1.70	0.40	0-+0.05	200	0.067	0.016	0-+0.002	8.0
1.80	0.40	0-+0.05	200	0.071	0.016	0-+0.002	8.0
1.90	0.40	0-+0.05	200	0.075	0.016	0-+0.002	8.0
2.00	0.50	0-+0.05	200	0.079	0.020	0-+0.002	8.0
2.10	0.50	0-+0.05	200	0.083	0.020	0- +0.002	8.0
2.20	0.50	0-+0.05	200	0.087	0.020	0- +0.002	8.0
2.30	0.50	0-+0.05	200	0.091	0.020	0-+0.002	8.0
2.40	0.50	0-+0.05	200	0.094	0.020	0- +0.002	8.0
2.50	0.50	0-+0.05	200	0.098	0.020	0-+0.002	8.0
2.60	0.50	$0-+0.10$	200	0.102	0.020	0-+0.004	8.0
2.70	0.50	0-+0.10	200	0.106	0.020	0-+0.004	8.0
2.80	0.50	$0-+0.10$	200	0.110	0.020	0-+0.004	8.0
2.90	0.50	$0-+0.10$	200	0.114	0.020	0- +0.004	8.0
3.00	0.50	$0-+0.10$	200	0.118	0.020	0- +0.004	8.0
3.50	0.80	$0-+0.10$	200	0.138	0.031	0- +0.004	8.0
4.00	0.80	$0-+0.10$	200	0.157	0.031	0-+0.004	8.0
4.50	0.80	0-+0.10	200	0.177	0.031	0- +0.004	8.0
5.00	0.80	$0-+0.10$	200	0.197	0.031	0-+0.004	8.0
5.50	0.80	$0-+0.10$	200	0.217	0.031	0-+0.004	8.0
6.00	0.80	0-+0.15	200	0.236	0.031	0-+0.006	8.0
6.50	0.80	$0-+0.15$	200	0.256	0.031	0-+0.006	8.0
7.00	1.00	0-+0.15	200	0.276	0.039	0-+0.006	8.0
7.50	1.00	0-+0.15	200	0.295	0.039	0-+0.006	8.0
8.00	1.00	0-+0.15	200	0.315	0.039	0-+0.006	8.0
8.50	1.00	0-+0.15	200	0.335	0.039	0-+0.006	8.0
9.00	1.00	0-+0.15	200	0.354	0.039	0-+0.006	8.0
9.50	1.00	0-+0.15	200	0.374	0.039	0-+0.006	8.0
10.00	1.00	0-+0.15	200	0.394	0.039	0-+0.006	8.0

Copper Tungsten / Roto Tube

Metric unit (mm)				Imperial unit (")			
O.D	I.D.	Tolerance of O.D.	Length	O.D	I.D.	Tolerance of O.D.	Length
1.00	0.20	0-+0.03	200	0.039	0.008	0-+0.001	8.0
1.10	0.20	0-+0.03	200	0.043	0.008	0- +0.001	8.0
1.20	0.20	0-+0.03	200	0.047	0.008	$0-+0.001$	8.0
1.30	0.20	0-+0.03	200	0.051	0.008	$0-+0.001$	8.0
1.40	0.20	0-+0.03	200	0.055	0.008	$0-+0.001$	8.0
1.50	0.20	0-+0.03	200	0.059	0.008	0- +0.001	8.0
1.60	0.40	0-+0.05	200	0.063	0.016	0- +0.002	8.0
1.70	0.40	0-+0.05	200	0.067	0.016	0-+0.002	8.0
1.80	0.40	0-+0.05	200	0.071	0.016	0- +0.002	8.0
1.90	0.40	0-+0.05	200	0.075	0.016	0- +0.002	8.0
2.00	0.40	0-+0.05	200	0.079	0.016	0- +0.002	8.0
2.10	0.50	0-+0.05	200	0.083	0.020	0- +0.002	8.0
2.20	0.50	0-+0.05	200	0.087	0.020	0- +0.002	8.0
2.30	0.50	0-+0.05	200	0.091	0.020	0- +0.002	8.0
2.40	0.50	0-+0.05	200	0.094	0.020	0-+0.002	8.0
2.50	0.50	0-+0.05	200	0.098	0.020	0-+0.002	8.0
2.60	0.50	0-+0.10	200	0.102	0.020	$0-+0.004$	8.0
2.70	0.50	0-+0.10	200	0.106	0.020	0-+0.004	8.0
2.80	0.50	0-+0.10	200	0.110	0.020	0-+0.004	8.0
2.90	0.50	0-+0.10	200	0.114	0.020	0-+0.004	8.0
3.00	0.50	0-+0.10	200	0.118	0.020	0-+0.004	8.0
3.50	0.80	0-+0.10	200	0.138	0.093	0-+0.004	8.0
4.00	0.80	0-+0.10	200	0.157	0.031	0-+0.004	8.0
4.50	0.80	0-+0.10	200	0.177	0.031	0-+0.004	8.0
5.00	0.80	0-+0.10	200	0.197	0.031	0-+0.004	8.0
5.50	0.80	0-+0.10	200	0.217	0.031	$0-+0.004$	8.0
6.00	0.80	0-+0.15	200	0.236	0.031	$0-+0.006$	8.0
6.50	0.80	0-+0.15	200	0.256	0.031	0-+0.006	8.0
7.00	1.00	0-+0.15	200	0.276	0.040	$0-+0.006$	8.0
7.50	1.00	0-+0.15	200	0.295	0.040	0-+0.006	8.0
8.00	1.00	0-+0.15	200	0.315	0.040	$0-+0.006$	8.0
8.50	1.00	0-+0.15	200	0.335	0.040	$0-+0.006$	8.0
9.00	1.00	0-+0.15	200	0.354	0.040	$0-+0.006$	8.0
9.50	1.00	0-+0.15	200	0.374	0.040	0-+0.006	8.0
10.00	1.00	0-+0.15	200	0.394	0.040	0-+0.006	8.0
							SEDEX-25

Copper Tungsten / Tapping electrode

Metric unit (mm)							
Code No	Pitch	OD	Depth	Thread Length	Shank Length	Flush hole	Available
M2	0.40	1.50	0.22	55	25		\triangle
M2.5	0.45	1.80	0.24	55	25		\triangle
M3	0.50	2.00	0.27	55	25		0
M4	0.70	2.80	0.38	55	25		0
M5	0.80	3.70	0.43	55	25		0
M6	1.00	4.50	0.54	55	25		0
M8	1.25	6.30	0.68	55	25		0
M10	1.50	8.00	0.81	55	25		\triangle
M12	1.75	9.70	0.95	$55 / 75$	25		\triangle
M14	2.00	11.50	1.08	$55 / 75$	25		\triangle
M16	2.00	13.50	1.08	55/75	25		\triangle
M18	2.50	15.00	1.35	$55 / 75$	25		\triangle
M20	2.50	17.00	1.35	$55 / 75$	25		\triangle

Imperial unit (")							
Code No	Pitch	OD	Depth	Thread Length	Shank Length	Flush hole	Available
1	64	0.0540		2-1/4	1.00		
2	56	0.0670		2-1/4	1.00		
3	48	0.0800		2-1/4	1.00		Developing
4	40	0.0930		2-1/4	1.00		"
4	48	0.0930		2-1/4	1.00		"
5	40	0.1060		2-1/4	1.00		"
6	32	0.1190		2-1/4	1.00		"
8	32	0.1450		2-1/4	1.00		"
10	24	0.1710		2-1/4	1.00		"
10	32	0.1710		2-1/4	1.00		"
12	24	0.1970		3-1/4	1.00		"
12	28	0.1970		3-1/4	1.00		"
1/4	20	0.2310		3-1/4	1.00		"
5/16	18	0.2935		3-1/4	1.00		"
5/16	24	0.2935		3-1/4	1.00		"
3/8	16	0.2793		3-1/4	1.00		"
3/8	24	0.3049		3-1/4	1.00		"
7/16	14	0.3309		3-1/4	1.00		"
7/16	20	0.3572		3-1/4	1.00		"
1/2	13	0.3866		3-1/4	1.00		"
1/2	20	0.4197		3-1/4	1.00		"

Characteristic

Tapping electrode is very important element to drill and tap for very hard metals, tight tolerance and high productivity demands.
Our tapping electrode is producted through special cutting-process for thread by CNC machine.
The quality will be compared with a rolling system in straightness and tolerance of outer diameter.
Our product always will be preserved the superior straigtness, pitch and outer diameter exactly.

Remarks

a) Straightness : 97%
b) Tolerance of pitch, outer diameter and length : $0 \sim+0.02 \mathrm{~mm}$
c) Material : Copper Tungsten, Copper graphite - EDM C3
d) Shape : With Flushing Hole, Without Flushing Hole
e) Process : Cutting thread system with single point tool by CNC M/C, not Rolling system

Electric contact

Characterics

Electrical contacts can be produced from a variety of precious metals including fine silver, silver tungsten, and copper tungsten alloy by sintering or impregnation method of power metallugy.
The design of contacts could be provided to your specific application according to the proposal drawing.

Application

Telecommunication
Circuit breaker
Semi-conductor
Automotive \& Power relay
ARC-Proof
etc ...

Shape

Contact assemblies by welding
Contact tapes
Contact button
etc ...

Product process

Copper tungsten metallurgy by sintering or Imnpregnation upon request
Silver tungsten metallurgy by sintering or Imnpregnation upon request

Specification				
Material	Composition	Density ($\mathrm{g} / \mathrm{cm}^{3}$)	Hardness (HV)	IACS (\%)
Fine Silver	99\% Ag	10.5	45	108
Silver Tungsten	50\% W	13.4	110	58
	65\% W	14.8	150	50
	70\% W	15.4	195	47
	75\% W	16.0	220	45
Copper Tungsten	60\% W	12.9	182	47
	70\%W	14.2	197	42
	75\% W	14.8	220	38
	80\% W	15.4	233	35

Heavy metal

Characterics

Tungsten based high density metallurgy are material with a high amount of tungsten content and a low amount of $\mathrm{Ni}-\mathrm{Cu}, \mathrm{Ni}-\mathrm{Fe}, \mathrm{Ni}-\mathrm{Cu}-\mathrm{Fe}$ and the other content upon request.
The products have the advantages such as good machinability, mechanical properties, high modules of elasticity and high absorption capacity against X -ray and λ-ray.

Application

Balanceable weight
Electrode for resistance welding
Electrodeheat upsetting anvil block
High voltage electrical contact
Protection shield for nuclear radiation
Substitutional material for uranium
Vibrating pulleys

Product proces

Powder metallurgy by sintering

Specification

Physical properties Code	WHA-1	WHA-2	WHA-3	WHA-4
Tungsten weight (\%)	85	90	95	97
Density (g/cm)	16	17	18	18.5
Hardness (HRC)	$25 \sim 30$	$26 \sim 32$	$27 \sim 33$	$30 \sim 35$
Tensile strength (kg/mm²)	$80 \sim 90$	$75 \sim 85$	$70 \sim 80$	$65 \sim 75$
Elongation (\%)	$20 \sim 25$	$15 \sim 20$	$5 \sim 10$	5
Impact strength (kg/F-m)	$25<$	$20<$	$14 \sim 15$	$14 \sim 15$
Electric conductivity (IACS\%)	$15 \sim 16$			

Dimension

Form class	Thickness (mm)	width (mm)	Length (mm)	Material composition
Billet	Ф5 ~ 10	"	$30 \sim 60$	W-Ni-Fe
Plate	$20 \sim 55$	"	$50 \sim 200$	W-Ni-Cu-Fe
Rod	Ф10 ~ 100	"	$50 \sim 350$	The others ...

[^1]
[^0]: ※ Other compositions are available upon request

[^1]: ※ Other compositions are available upon request

